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Metal-metal dative bond formation in complexes containing
d® metal ions is relatively rare in organometallic and coordination
chemistry? considering the large number of examples with weaker
metal-metal “interactions” via the d,: orbital(s) of the d® metal(s).
We report here on the facile formation of three mixed Pt,Pd
complexes containing two bridging anionic 1-methylcytosine (1-
MeC") nucleobases and on their structures which display un-
precedented short Pt—Pd distances.

Dinuclear complexes of the types cis-[X,M(L),M’Y,]"™, con-
taining the d® metal ions M = M’ = Pt(II) or Pd(II), or M =
Pt(II) and M’ = Pd(II), and two 1,2-difunctional ligands L,>¢
as well as additional X and Y ligands (typically NH,, amines,
or halogens), virtually always are built up such that the metal
coordination planes face each other (A in Chart I). Intracomplex
M-M’ distances are usually around 2.8-3 A. In the case of M
= M’ = Pt(II), oxidation of the two metals is facilitated, either
to mixed-valence-state compounds’ or to diplatinum(IIT) species.?
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From model building it is obvious that a similar arrangement is
impossible for the corresponding trans complexes due to severe
steric hindrance between X and Y ligands (B). Only with non-
heterocyclic bridging ligands having a larger bite distance are
compounds of type B formed.’

As has recently been shown by us,!® trans-[(NH,),Pd(1-
MeC-N3),]%*,!! when reacted with ¢rans-[(NH,),Pd(H,0),]%*,
escapes the steric clash between X = Y = NH, ligands in a
hypothetical trans-[(NH,),Pd(1-MeC™-N3,N4),Pd(NH,),]** by
isomerization to the corresponding cis complex (head-tail). We
have now observed another pattern by which steric hindrance
between X and Y ligands is prevented, yet the trans geometry of
both metals is maintained: When trans-[(NH,),Pt(1-MeC-
N3)2](N03)2 (1)12 is reacted with trans-[(NHg)zpd(Hzo)zl *+13
in H,0,'* trans-[(NH;),Pt(1-MeC--N3,N4),Pd(NH;)]-
(NO,),-3H,0 (2) is formed in high yield. The structure's of 2
(Cin Chart I and Figure 1) reveals an essentially square-planar
coordination geometry of Pd and a square-pyramidal one for Pt
with Pd in the apical position. Pd and Pt coordination planes are
virtually at right angles (88.4 (2)°). The two metals are bridged
by two almost parallel (dihedral angle 9.1 (1)°) 1-methylcytosinato
anions, trans with respect to Pt, in a head-head arrangement. Pd
is surrounded by two deprotonated amino groups of 1-MeC", an
NHj, and a Pt. The second NH;, which originally was bound
to Pd, has been lost during the reaction. The metal-metal distance
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Figure 1. ORTEP drawing of the cation of trans-[(NH;),Pt-
(CsHgN;0),Pd(NH;)](NO;),:3H,0 (2). Selected structural data are
as follows: Pt—N3,2.011 (4) A, Pt-N3A, 2.024 (4) A; Pt-N11, 2.038
g) A; Pt=N12, 2.037 (5) A; Pd-N4, 2.005 (5) A; Pd-N4A, 2.014 (5)

: Pt=Pd, 2.511 (1) A; Pd-N2, 2.001 (5) A; Pd—Pt-N3, 87.4 (1)°;
Pd-Pt-N3A, 88.1 (1)°; Pt—~Pd—N4, 87.2 (1)°; Pt—-Pd-N4A, 86.1 (1)°;
Pt-Pd-N2, 178.5 (2)°. The cation of trans-[(NH;),Pt-
(CsHgN;0),PdCI]NO;-H,0 (3) is very similar to that of 2 and therefore
not shown. The ammonia ligand N2 is replaced by Cl, with Pd—Cl and
Pt-Pd distances of 2.313 (1) and 2.518 (1) A, respectively.

within the cation is 2.511 (1) A and is best described by a Pt(II)
— Pd(II) dative bond formalism rather than a Pt(IIT)-Pd(I) bond.
The normal bond length Pd—(NH;) (2.001 (5) A) strongly opposes
this alternative description.

Two closely related compounds, trans-[(NH,),Pt(1-MeC"-
N3,N4),PdCI](NO,;)-H,0 (3) and trans-[(NH;),Pt(1-MeC--
N3,N4),Pd(1-MeU-N3)](NO;)-3H,O (4), were obtained upon
reaction of 1 with K,PdCl,!® and by reacting 3 with 1-methyluracil
(1-MeUH),"” respectively. X-ray structures's of 3 and 4 show
closely similar (NH;),Pt(1-MeC~),Pd entities, e.g., Pt-Pd dis-
tances of 2.518 (1) A (3) and 2.515 (1) A (4) and dihedral angles
of 81.6 (2)° [PAN,CI/PtN, (3)] and 87.3 (2)° [PdN,/PtN, (4)].
The Pd-Cl bond length of 2.313 (1) A in 3 appears to support
the Pt(II) — Pd(II) formalism. Only the cation of 4 is depicted
in Figure 2. 1-MeU acts as a monodentate ligand through N3,
and its molecular plane is almost perpendicular to the Pd coor-
dination plane (75.1 (2)°).

(16) 3 was prepared in a similar way as 2 from 1 and K,PdCl, (pH 6-9).
Dark greenish-yellow crystals of 3 were isolated in >60% yield. Satisfactory
elemental analysis was obtained for C, H, N, Cl. 'H NMR (D,0) shifts
(ppm): H6, 7.010, d (7.6 Hz); HS, 5.569, d; CH;, 3.300,s. -

(17) Reaction of 3 with 1.25 equiv of 1-methyluracil at pH 8-9 and slow
evaporation gave brownish-red crystals of 4 in good yield (>90% according
to 'H NMR). Satisfactory elemental analysis was obtained for C, H, N. 'H
NMR (D,0) shifts (ppm): 1-MeC~ H6, 6.981, d (7.6 Hz); HS, 5.495, d; CH,,
3.288; 1-MeU H6, 7.544, d (7.4 Hz); HS, 5.707, d; CH;,, 3.400.
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Figure' 2. ORTEP drawing of the cation of trans-[(NH,),Pt-
(CsHgN;0),Pd(CsHsN,0,)INO;:3H,0 (4). Salient structural features
are as follows: Pt-N3, 2.020 (4) A; Pt-N3A, 2.020 (4) A; Pt-NI1,
2.021 (5) A; Pt=N12, 2.036 (5) A; Pd—N4, 1.985 (4) A; Pd-N4A, 1.994
(4) A; Pt—Pd, 2.515 (4) A; Pd-N39, 2.056 (4) A; Pd-Pt-N3, 88.0 (1)°;
Pd-Pt-N3A, 86.8 (1)°; Pt—Pd~N4, 86.5 (1)°; Pt—Pd—-N4A, 87.1 (1)°;
Pt—-Pd-N39, 178.3 (2)°.

The compounds described herein are of interest for several
reasons: First, they reveal a binding pattern dramatically different
from that seen in dinuclear metal nucleobase complexes derived
from cis-(NH;),Pt!. This refers in particular to the donor-ac-
ceptor bond between Pt and Pd as opposed to weak “interactions”
in the latter case. Second, the shortness of the Pt—Pd bond is
unprecedented. It is shorter than the shortest Pt—Pt bond in related
diplatinum(III) compounds!® and much shorter than the Pt —
Pt dative bond (2.769 (1) A) in [Pt,(CH;);(dppm),]PFs.2%* Third,
metalation of the exocyclic amino group of a cytosine nucleobase
in the pH range 6-9, as observed in our compounds, is very rare.!?
Fourth, the binding pattern seems to explain why analogues of
the mixed-valence-state “platinum pyrimidine blues” ! have never
been obtained from trans-(NH,),Pt'L
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